Circuit de chauffage central : version avec chauffage solaire.

Introduction

Nous avions proposé un circuit de chauffage un peu hors du commun, centré sur le principe d’une vanne cinq voies. Le but était d’obtenir un système présentant conjointement les avantages des deux grands types de montages à vannes trois voies, dits en répartition et en mélange.

Ce système présentait néanmoins quelques inconvénients : il n’était pas prévu pour gérer le chauffage solaire et ne permettait pas d’exploiter la réserve de chaleur (ballon tampon) pour produire l’eau chaude sanitaire. Cette nouvelle formule permet de résoudre ces problèmes. De plus, la possibilité de transférer la chaleur de la réserve principale vers celle de l’eau chaude sanitaire nous permet de minimiser l’utilisation d’une autre source d’énergie couteuse, y compris en saison hors chauffe. En effet, la réserve d’eau chaude sanitaire peut être utilisée en fin de journée puis se régénérer par l’intermédiaire de la réserve principale en pleine nuit, lorsque les chauffe-eaux solaires ne reçoivent plus de rayonnement. La réserve générale d’eau chaude sanitaire est donc conceptuellement étendue.

Le chauffage solaire et le chauffage basse température

Le chauffage solaire est connu principalement pour la production de l’eau chaude sanitaire, mais peut aussi contribuer au chauffage de l’habitation. La subtilité réside dans le fait que la température maximale que peut produire à un certain moment le chauffe-eau solaire peut ne pas suffire à obtenir un flux de chaleur dans le bon sens. C’est à dire, venant du chauffe eau solaire pour rentrer dans l’eau chaude du circuit et ainsi contribuer à réaliser des économies de combustible (bois, fioul, gaz, selon votre chaudière principale).

En effet, si l’eau chaude du circuit de retour (provenant des radiateurs) est à une température toujours supérieure à celle produite par le chauffe-eau solaire, vous ne pourrez pas transférer l’énergie solaire dans votre circuit de chauffage. Pourtant, dans un tel cas, votre chauffe-eau solaire peut tout à fait être en train de produire de l’énergie.

Si la température extérieure est de 12°C et que l’eau sortant du chauffe-eau solaire est à 25 °C, cela signifie bel et bien qu’il récupère de l’énergie. Mais, si l’eau de retour du circuit de chauffage est à une température supérieure ou égale à 25°C, alors, l’énergie solaire ne rentrera pas dans le circuit de chauffage. Ainsi, on comprend l’utilité du chauffage dit « basse température » utilisant des planchers chauffants ou de très grands radiateurs. Plus la température de l’eau de retour sera basse (au minimum théoriquement égale à la température à l’intérieur du logement), plus une source hydraulique simple sera susceptible d’y ajouter de l’énergie.

En théorie, si les déperditions dans les chauffe-eaux solaires étaient nulles, la température ne cesserait d’y croitre, pour peu qu’il y ait toujours de la lumière. Ainsi, la température finirait par systématiquement être supérieure à la température du circuit de retour, à débit nul (utiliser l’intermittence de la circulation d’eau, peut être une solution). Cependant, dans la réalité, les capteurs solaires ont des déperditions, d’autant plus fortes que la température est élevée. Il faut veiller à ce qu’ils ne deviennent pas des radiateurs réchauffant l’extérieur en puisant l’énergie dans le circuit de chauffage primaire.

Il existe une solution permettant d’exploiter plus efficacement l’énergie produite par le chauffe eau-solaire : ce n’est autre que la pompe à chaleur. Moyennant un apport d’énergie électrique par exemple, elle permettrait de pomper l’énergie thermique solaire. On pourrait tout à fait alimenter un « petit » réservoir intermédiaire en eau à température modérée dans lequel on ne pomperait la chaleur solaire que de façon intermittente.

Nouvelle version : principaux avantages et inconvénients

a. L’exploitation de la réserve de chaleur est possible pour produire l’eau chaude sanitaire.

Cette nouvelle conception permet de se débarrasser de l’inconvénient que nous avions mentionné dans l’ancienne version : le fait qu’il est impossible d’utiliser la chaleur stockée dans la réserve pour produire l’eau chaude sanitaire.
Cependant, en contrepartie, nous avons besoin d’une pompe supplémentaire (et d’un clapet anti retour). Elle a pour rôle de transférer l’eau de la réserve de chaleur vers le ballon d’eau chaude sanitaire. Cette pompe supplémentaire n’est en revanche pas utilisée en continu. Cela signifie que nous n’induisons pas de consommation électrique supplémentaire. De plus, si le ballon d’eau chaude possède une résistance électrique pour compléter la chaudière à bois et le chauffe eau solaire, nous évitons tant que possible son utilisation. La consommation électrique de cette pompe serait environ de 40 Watts, contre 1000 à 3000 Watts pour la résistance électrique. Aussi, le temps de chauffe avec une résistance électrique risque d’être plus grand que le temps de transfert d’un certain volume d’eau déjà chaude.

b. La réserve de chaleur est commune à la chaudière et au chauffage solaire.

De même que dans la version précédente, il est possible de réaliser cette réserve avec de banals cumulus électriques récupérés, dont les parois sont en bon état, mais dont la résistance électrique est hors d’usage. Nous évitons ainsi l’acquisition d’un ou plusieurs ballons spécifiques très couteux. Dans les systèmes « commerciaux » ordinaires, c’est souvent la stratification qui permet l’utilisation d’un réservoir unique. La stratification consiste à prendre en compte le fait que, dans un réservoir de chaleur, l’eau la plus froide se situe en bas, alors que l’eau la plus chaude se situe en haut. Ainsi, on raccorde plutôt les chauffe-eaux solaires en bas du réservoir, et les chaudières plutôt au milieu, pour assurer généralement le fait de pouvoir effectuer les échanges de chaleur dans le bon sens. On peut aussi trouver dans ces ballons, un autre réservoir faisant office d’échangeur, et contenant l’eau chaude sanitaire. Ces réservoirs multifonctions coûtent entre 1500 et 3000 euros en moyenne selon leur capacité. Dans notre cas, c’est le fait que l’échangeur solaire se comporte en soutien ou en substitut de la chaudière principale qui implique la non nécessité d’avoir recours à un ballon dédié exclusivement au chauffage solaire.

Ballon tampon muni de deux échangeurs, celui du bas étant dédié aux sources de chaleur à températures potentiellement modérées (chauffe eau solaire), et celui du haut étant parfois dédié à la préparation instantanée d’eau chaude sanitaire. La masse d’eau du ballon est généralement directement chauffée par une chaudière à bois. Les échangeurs servent à créer des séparations entres différents circuits hydrauliques.
c. La position de l’échangeur solaire implique l’utilisation d’une vanne trois voies supplémentaire.

L’échangeur solaire est installé en amont de la chaudière à bois (laquelle peut être d’autre nature : gaz, fioul, etc.) parce qu’il a pour but, lorsque la production solaire est insuffisante, de préchauffer l’eau de retour. De cette façon, nous soulageons la chaudière principale. Si la chaudière principale voit une eau plus chaude lui revenir, sa propre régulation (calorstat et trappe de tirage, dans le cas d’une chaudière à bois conventionnelle) réduira sa puissance, induisant une réduction de consommation de combustible.

Entre l’échangeur solaire et la chaudière, nous devons donc installer une vanne trois voies. Cette vanne a pour but de bypasser la chaudière principale, dans le cas où le chauffage solaire est suffisant. En effet, si nous laissions l’eau chauffée par le soleil traverser une chaudière à l’arrêt, cette dernière génèrerait ce que l’on appelle des pertes par balayage. En effet, le foyer demeurant chaud, un phénomène de convection naturelle induirait un tirage. La circulation d’air dans le foyer refroidirait alors ce dernier. Nous pourrions être tenté de simplifier le système en utilisant une trappe de coupure de tirage située dans le conduit de fumées. Une telle trappe devrait impérativement être équipée d’un détecteur afin qu’il n’y ai pas d’oubli d’ouverture lors de la remise en marche de la chaudière. Cependant, même avec un tel dispositif, on maintiendrait un foyer chaud générant des déperditions dans la pièce où se situe la chaudière. Ce phénomène est sans conséquence en saison de chauffage, puisque la chaudière contribuerait à réchauffer le local où elle se situe. Il n’en n’est pas de même en saison estivale. Le phénomène de chauffage parasite en été serait encore plus conséquent si la chaudière était en fait une cuisinière chaudière. L’énergie solaire réchaufferait la cuisine ! Nous préconisons donc l’utilisation d’une vanne trois voies (ou deux vannes couplées mécaniquement) fonctionnant en tout ou rien, selon la saison. Ainsi, il est possible, sans risque de réchauffer l’intérieur, d’utiliser une cuisinière chaudière ou tout autre type de poêle hydraulique/bouilleur.

La notion d’échangeur ultime

L’échangeur ultime est un émetteur, c’est à dire un radiateur, aérotherme ou plancher chauffant n’ayant aucune régulation. Il reçoit l’eau de fin de circuit qui n’a pas été recyclée. C’est l’eau de retour ultime, plus sa température sera basse, plus le retour total (additionné de l’eau froide du fond de la réserve) aura une température basse. Plus la température de retour sera basse, plus il sera possible de valoriser l’énergie solaire, comme expliqué précédemment. Il est tout à fait possible, dans le cas d’une maison équipée d’une VMC double flux, d’insérer un échangeur eau/air après l’échangeur de la VMC. Cet échangeur peut tout à fait être mixte et recevoir en saison estivale de l’eau froide provenant d’un serpentin enterré dans le sol. On pourrait alors bénéficier du principe d’un puit provençal pour rafraichir l’air intérieur. Sa position sur le retour de la vanne cinq voies n’est pas choisie au hasard. Il faut bien comprendre le mécanisme de chauffe et de régulation dans les locaux. Moins les émetteurs consommeront de chaleur, plus il y aura de rebouclage (se reporter au schéma, rebouclage = chemin pompe 6 – vanne trois voies 4.2 – émetteurs 5), donc moins il y aura de retour traversant l’échangeur ultime et plus il y aura de stockage dans la réserve. Ce fonctionnement est cohérent : moins l’échangeur ultime 20 est alimenté, moins il chauffe les locaux. Si l’on avait placé l’échangeur ultime 20 avant la pompe 10, par exemple, le fonctionnement aurait été potentiellement incohérent. Plus on aurait eu de retour de la réserve, surtout si elle est entièrement chaude, plus on aurait chauffé l’air entrant par la ventilation, alors que le stockage maximal survient précisément quand le rebouclage est minimal, c’est à dire quand les locaux sont à la température demandée. Enfin, lorsque le retour total traversant la pompe 10 est chaud, cela signifie que le besoin en chaleur est comblé, puisque le bas de la réserve est chaud. Nous pouvons donc avoir la conscience tranquille si le chauffage solaire ne parvient plus à faire rentrer de chaleur dans le système dans une telle situation.

Schéma

Table de fonctionnement

Conclusion

Bien que nécessitant l’ajout d’un circulateur et d’un jeu de vannes motorisées (9 et 15), nous pouvons étendre conceptuellement la réserve d’eau chaude sanitaire. C’est d’autant plus pertinent que ce nouveau circuit intègre le chauffage solaire. Hors saison de chauffe, nous pouvons donc garantir l’utilisation maximale du chauffage solaire pour la production d’eau chaude sanitaire. Ce système reste néanmoins compatible avec le remplacement de la chaudière bois, ou l’ajout d’une autre chaudière en relève.

Circuit de chauffage : version sans chauffage solaire.

Introduction

Dans le domaine du chauffage, en discutant avec de nombreux futurs ou actuels propriétaires de maison, nous constatons beaucoup d’utilisateurisme. Nous vous proposons donc, bien évidemment, un circuit de chauffage hydraulique un peu différent de ce que l’on peut trouver « normalement ».

Cette conception peu fréquente présente plusieurs avantages :

  • Celui de la vanne 4 voies en ce qui concerne la régulation de la température de départ, c’est à dire que cette dernière est mitigeable et contrôlable par un asservissement.

Les vannes quatre voies conventionnelles ont pour inconvénient de mitiger aussi le retour. C’est néanmoins parfois un avantage car elles peuvent faire office de vanne de recyclage afin d’augmenter la température du retour sur la chaudière. Cependant, ces deux fonctions, avec une vanne quatre voies conventionnelle, sont corrélées. Il n’est pas certains qu’en tout temps, la température de départ désirée soit en adéquation avec la température de retour nécessaire à la préservation de la chaudière. (Rappelons que le réchauffage du retour est nécessaire pour éviter la condensation sur les foyers des chaudières bois, et, est aussi recommandable sur les chaudières fioul en fonte ou en acier. La condensation est la cause de la corrosion prématurée des foyers). De plus, si la voie mitigée envoyée au retour par une vanne quatre voies est utilisée pour le stockage de chaleur (ce qui impliquerait la présence d’un recyclage indépendant sur la chaudière), alors il n’est pas optimal car il ne se fait pas à la température maximale.

  • Celui de la vanne trois voies en ce qui concerne le retour à la température maximale. En effet, une installation à vanne trois voies conventionnelle permet un retour vers un ballon de stockage à la plus haute température, le rendant ainsi performant.

La vanne trois voies conventionnelle, avec un montage dit « en mélange » régule le chauffage en changeant le débit qui est attribué à la chaudière. Elle mélange le retour avec l’eau qui provient de la chaudière, et, dans ce cas, la chaudière risque de ne pas fonctionner à puissance nominale, là où son rendement serait théoriquement le plus élevé. Avec un montage dit « en décharge », en revanche, le débit est constant dans la chaudière mais en contrepartie, la température de départ vers le circuit des émetteurs n’est pas régulée et correspond à la température de sortie de la chaudière. Dans un tel cas, la température des conduits est plus élevée, ce qui peut ne pas convenir à toutes les installations comme les planchers chauffants par exemple. Le circuit d’émetteurs n’est pas alimenté en basse température à proprement parler, c’est la variation du débit à l’entrée des émetteurs qui fait office de régulation de chaleur.

En résumé, la conception proposée permet de réguler la température de départ tout en séparant l’eau froide du retour de l’eau chaude excédentaire qui est alors dédiée au stockage, nous avons donc les avantages des deux montages « décharge » et « mélange » :

  • le débit dans les émetteurs est sensiblement constant
  • la température de départ vers les émetteurs est régulée (mitigée)
  • le débit dans la chaudière est constant (rendement maxi)
  • la température de stockage est quasiment toujours la plus haute disponible (sauf lors de la production d’E.C.S. , aux effets négligeables).
  • l’utilisation de la chaleur est plus rationnelle : l’excédent au départ est stocké, l’excédent au retour est, tant que possible, réutilisé.

En outre, cette conception permet aussi de soumettre les pompes de circulation (appelées parfois accélérateurs ou circulateurs) à des températures plus basses, augmentant ainsi la durée de vie de leur moteur. Les pompes refoulent l’eau froide au lieu d’aspirer l’eau chaude. Cependant, en contrepartie, elle possède au moins trois inconvénients :

  • En cas de demande de stockage total (sans alimentation du circuit des radiateurs) ou de demande d’utilisation directe (sans circulation dans le stockage), on obtient deux circuits hydrauliques ne communicant plus entre eux, à l’exception des fuites qui existent souvent dans les vannes trois voies. Cela peut créer des différences de pression, qui ne sont pas critiques mais qui imposeraient, selon la qualité et le type des vannes trois voies, l’utilisation de deux vases d’expansion distincts.
  • Le retour des chaudières nécessitant un recyclage ne peut se faire que via l’utilisation d’un échangeur, compte tenu du fait que les circulateurs poussent l’eau de retour dans la chaudière. Mais d’une certaine manière, l’échangeur permet d’éviter la présence d’un circulateur supplémentaire si l’on considère que le principe premier de cette installation (double vanne trois voies) en nécessite obligatoirement deux.
  • La conception gère intégralement les pressions dans le circuit, il ne peut donc, tel que dessiné ici, gérer qu’une seule gamme de température pour un seul circuit. On pourrait néanmoins palier ce problème via l’utilisation d’une bouteille de découplage hydraulique (bouteille casse pression ou bouteille de mélange), mais dans ce cas il faudra ajouter des circulateurs et des vannes régulées pour chaque circuit : la régulation fine du circuit primaire perd son intérêt.

Remarques complémentaires :

  • Ce système est prévu pour être équipé d’une partie commande (microcontrôleur, automate industriel ou PC selon vos préférences) qui gère l’état des vannes motorisées selon des grandeurs de températures captées à différents endroits : par exemple, lorsque la chaudière à bois est à court de combustible, la température de cette dernière chute, et la partie commande peut décider automatiquement de passer sur l’exploitation de la réserve, puis sur la chaudière auxiliaire.
  • Cette installation ne permet pas d’utiliser la chaleur stockée dans le ballon tampon dédiée au chauffage pour produire l’eau chaude sanitaire.
  • Cette installation permet d’utiliser des réservoirs de chaleurs pouvant être des ballons d’eau chaude sanitaire récupérés, dépourvus des accessoires liés à l’utilisation du phénomène de stratification.
  • La production d’eau chaude sanitaire réalisée par la chaudière auxiliaire dédiée est possible parallèlement à l’exploitation en chauffage de la chaleur stockée, sans interférences.
  • Lorsque la chaudière bois est en fonctionnement, la production d’eau chaude sanitaire perturbe la température de départ chaud, mais cette perturbation est compensée par la régulation de la vanne cinq voies repérée 6.
  • Deux circulateurs couvrent les fonctions principales de stockage, alimentation du circuit des émetteurs (radiateurs, planchers chauffants, etc.) et de production d’eau chaude sanitaire quel que soit le mode de fonctionnement.
  • Au vu du coût de l’énergie bois, on peut décider, pour plus de confort, de maintenir le ballon d’eau chaude sanitaire à sa température de consigne à toute heure tant que la chaudière bois est en fonctionnement. Ce serait moins pertinent et plus économique/écologique de gérer la production d’E.C.S. par plages horaires si l’on fait usage d’une autre énergie, plus coûteuse (fioul, gaz, électricité, etc.).

Avertissements

Le schéma proposé ci-dessous ne mentionne pas les accessoires de sécurité indispensables dans une installation de chauffage hydraulique telles que les soupapes de sécurité thermiques, vannes de remplissage et autres accessoires tels que les pots à boues. Il conviendra donc de le compléter par les éléments de sécurité « normaux » que « l’on retrouve habituellement » dans les circuits de chauffage hydrauliques.

Schéma

Table de fonctionnement

Conclusion

Une fois de plus, il ne faut pas hésiter à inventer soi même, surtout lorsqu’il s’agit de systèmes, comme ce circuit de chauffage, faisant appel à des principes d’hydraulique très simples. Proposer une structure ou un schéma d’un système, sauf erreurs, revient en réalité à proposer le cahier des charges auquel il répond. Dans ce cas, ce cahier des charges est plus ou moins décrit dans l’introduction. Nous tenons enfin à remercier Nicolas, qui se reconnaîtra, pour sa critique constructive qui a permis d’améliorer cet article.

Gazogène stationnaire pour chauffage central.

Introduction

Le gazogène, nous l’avons déjà évoqué dans l’article sur le mimétisme technologique. Contrairement à son usage le plus répandu dans le domaine des loisirs techniques, nous proposons une version destinée au chauffage des habitations. Notez que les installations stationnaires de gazogènes sont particulièrement répandues en Allemagne et en Autriche. On les appelle en général « centrales de cogénération à biomasse ». En effet, dans ces installations, la biomasse (bois déchiqueté) est gazéifié puis injecté dans des groupes électro-générateurs dont les pertes en chaleur sont valorisées.

En revanche, notre cas ci-proposé devrait être qualifié de « chaudière à gaz de bois, à condensation ». Cette technologie cumule les avantages d’une chaudière à plaquette de bois (souvent très coûteuse) à ceux d’une chaudière à condensation pour ce qui est du rendement énergétique. De plus, la plaquette forestière est actuellement (2020) l’énergie bois la moins cher au kWh.

Avertissements

Le schéma et les explications ci-dessous ne sont jamais qu’une suggestion de conception. Elle n’intègre en aucun cas la description des organes et mesures de sécurité totalement indispensables dans une tel projet.
Il y a en effet des dangers mortels tels que l’asphyxie, l’intoxication au monoxyde de carbone, les explosions, brûlures, etc.
Une telle installation n’est donc absolument pas utilisable en l’état, telle que présentée dans cet article.
Il ne s’agit encore une fois que d’une description sommaire de ce que serait une hypothétique installation de chauffage à gaz de bois.
Un tel dispositif ne devrait en aucun cas se situer dans un local d’habitation.

Schéma

Nomenclatures explicatives

1. Gazéification

  • 1.1 Structure principale externe du silo à plaquettes : réalisée avec un ensemble mécanosoudé de cornières en acier, elle peut ensuite être comblée de briques en béton cellulaire. Le béton cellulaire est un excellent isolant thermique résistant à la chaleur. Le tout peut ensuite être peint voire enduit.
  • 1.2 Couvercle isolé supérieur : recouvert de laine de verre (ou de roche), il permet d’isoler le couvercle du silo. Cela permet de minimiser la condensation. Il ne faut pas oublier que le couvercle sera manipulé à chaque recharge du silo.
  • 1.3 Couvercle du silo : il s’agit du couvercle du fut qui garantit l’étanchéité du silo.
  • 1.4 Soupape de sécurité : accessoire de sécurité indispensable, il limite la pression dans le silo en cas de déflagration. Cette dernière pourrait survenir en fonctionnement par une intrusion d’air impromptue. Pour cette raison il est recommandé d’inter-verrouiller le couvercle 1.2. C’est à dire d’empêcher son ouverture en cours de fonctionnement comme cela se pratique sur les lave-linges, via des mécanismes spécifiques.
  • 1.5 Poids presseur : il facilite la descente des plaquettes en réduisant la formation d’un cône vide au centre du silo.
  • 1.6 Espace utile du silo : c’est la zone de réserve des plaquettes de bois dont le niveau baisse au fur et à mesure de la gazéification.
  • 1.7 Isolant thermique : cet isolant est celui de partie haute du silo, soumis à des températures moindres qu’au niveau du foyer. Il peut éventuellement être de nature différente que l’isolant 1.13.
  • 1.8 Allumeur : il permet l’inflammation des plaquettes de bois et n’entre en action que dans le cadre d’un cycle d’allumage. Il pourrait être constitué d’un système d’injection d’air chaud, ce qui est le cas dans certaines chaudières à pellets. Cependant, compte tenu de la distance importante que l’air doit parcourir dans la masse de béton réfractaire, il pourrait avoir suffisamment chuté en température pour ne plus permettre l’incandescence du bois. Un tel dispositif devrait être monté provisoirement en série avec l’air principal via un bypasse lors de la procédure d’allumage. Une autre méthode est l’injection d’un combustible liquide ou l’introduction d’une flamme de gaz. C’est plutôt à ces deux dernières options que correspond le schéma.
  • 1.9 Arrivée d’air : il s’agit de la conduite principale d’alimentation en air du foyer du gazogène.
  • 1.10 Foyer : c’est la zone où les plaquettes de bois sont pyrolysées.
  • 1.11 Corps du foyer : en béton réfractaire, réalisé avec du fondu, de la chamotte, et de la vermiculite (ou de la pouzzolane), il est coulé sur des contre-formes (en polystyrène par exemple, ensuite dissoutes à l’aide d’acétone) et en emprisonnant les conduites d’arrivée d’air. La forme en diabolo est indispensable pour éviter la formation excessive de goudrons. En effet, elle contraint l’intégralité des gaz à passer par le centre chaud du foyer, favorisant ainsi le craquage.
  • 1.12 Distributeur torique : il répartit toutes les buses d’injection d’air autour du foyer, garantissant son homogénéité et permettant ainsi la descente facile des plaquettes de bois.
  • 1.13 Isolant thermique : devant résister aussi à des hautes températures, il est recommandé qu’il soit constitué du même béton réfractaire que la structure du foyer 1.11.
  • 1.14 Agitateur : il permet de secouer périodiquement le plateau 1.15 afin d’éviter le colmatage .
  • 1.15 Plateau : il retient les charbons produits par le foyer, afin de les maintenir à haute température et dans la trajectoire des gaz, car ils y jouent le rôle primordial de réducteur.
  • 1.16 Grille de filtration : elle constitue le premier système de filtration du gaz, empêchant l’aspiration de charbons grossiers.
  • 1.17 Structure de l’embase : elle peut être constituée d’une dalle en béton coffrée, ou d’une plaque métallique par exemple.
  • 1.18 Couvercle isolé inférieur : muni d’un isolant thermique, il a la même fonction que le couvercle supérieur 1.2.
  • 1.19 Couvercle du cendrier : il garantit l’étanchéité du cendrier tout en facilitant le décendrage et la maintenance.
  • 1.20 Espace cendrier : il permet de recueillir les cendres tombées du plateau, c’est aussi depuis cet endroit qu’est aspiré le gaz produit.
  • 1.21 Structure portante : en poutrages bois, IPN, mécanosoudure, pieds de bureaux, etc.
  • 1.22 Conduite de transfert : elle doit impérativement être isolée thermiquement et posséder une cassure avec des raccords en té, ou un raccord en croix. Elle doit pouvoir être inspectée et nettoyée par le biais de bouchons de visite. Ces bouchons doivent être étanches mais résistants aux très hautes températures (env.600°C). De ce fait, l’étanchéité devra être effectuée par des joints métalliques, en bronze par exemple, sur des surfaces rigoureusement planes.

2. Filtration

  • Avants propos : la structure globale du filtre n’est pas abordée, elle est sensiblement la même que celle de la partie gazéification. Il est même possible de couler le béton réfractaire de telle sorte à ce que la partie filtration et gazéification soient comprises dans la même structure.
  • 2.1 Récupérateur de poussières : il permet de récupérer les cendres fines centrifugées dans le cyclone 2.2 ainsi que les éventuels condensats. Les condensats doivent être minimes à cet endroit car l’isolation thermique doit maintenir les gaz à la température la plus élevée jusqu’à leur sortie de la filtration.
  • 2.2 Cyclone : il permet de centrifuger les particules les plus lourdes qui tombent ensuite dans le récupérateur 2.1.
  • 2.3 Grille : elle retient les éléments filtrants en laissant passer le gaz.
  • 2.4 Charbon : premier élément filtrant, le charbon de bois bon marché se remplace à moindres frais.
  • 2.5 Second média : le second et le troisième média de filtration peuvent être constitués de matières minérales comme la pouzzolane, la zéolithe ou l’argile sous forme de billes. Bon marchés et résistants aux très hautes températures, ils assurent la propreté des échangeurs de la partie refroidissement.
  • 2.6 Troisième média : le troisième média de filtration est optionnel, de manière logique il doit toujours être plus fin que le précédent, ce peut être de la zéolithe si le média précédent était constitué de pouzzolane, par exemple.
  • 2.7 Couvercle du filtre : très étanche, il doit aussi résister à des températures de l’ordre de plusieurs centaines de degrés Celsius. Un joint métallique est dans ce cas aussi de mise.
  • 2.8 Couvercle isolé : recouvert de laine de verre (ou de roche), il permet d’isoler le couvercle du filtre 2.7.
  • 2.9 Conduite de descente : elle permet de déplacer la sortie des gaz vers le bas, principalement pour les besoins de disposition de la partie refroidissement.

3. Refroidissement

  • 3.1 Échangeur air/gaz : l’objectif principal de cet échangeur est de maximiser la température d’entrée de l’air dans le gazogène, réduisant à priori la formation de goudrons. La température du gaz produit s’en trouve néanmoins abaissée.
  • 3.2 Échangeur eau/gaz : l’objectif de cet échangeur est de refroidir efficacement le gaz. L’eau qui circule dans cet échangeur est prélevée sur le retour du circuit hydraulique du chauffage central. En règle générale, le gaz ne pourra jamais descendre en dessous de 50°C à la sortie de cet échangeur, c’est une température usuelle de retour d’un circuit de chauffage standard.
  • 3.3 Échangeur air/gaz : comme l’air ambiant est normalement inférieur à la température du gaz en sortie de l’échangeur 3.2, on refroidit encore le gaz. Cependant, dans un hypothétique cas idéal d’un échange efficace à 100% (et de caractéristiques identiques de l’air et du gaz de bois), la température du gaz restera toujours supérieure à celle de l’air, puisque le débit de gaz est forcément plus élevé que le débit d’air.
  • 3.4 Échangeur air/gaz : cet échangeur final n’évacue pas de calories du système global, il permet surtout le réglage de la différence de température entre l’air envoyé au brûleur et le gaz. Ceci est important car le mélange air/gaz dans le brûleur se fait de manière optimale à une valeur de différence précise de température. Il conviendra de la trouver au moment du réglage du brûleur.
  • 3.5 Vanne motorisée : cette vanne motorisée ne s’utilise pas en régulation mais en tout ou rien, elle ferme l’arrivée d’air pour arrêter le gazogène et l’ouvre au moment de la procédure de démarrage.
  • 3.6 Filtre à air : il protège la canalisation d’arrivée d’air de l’encrassement.
  • 3.7 Filtre à air : il protège les canalisations et le brûleur de l’intrusion de poussières. Il convient de l’adapter au débit d’air élevé demandé par le brûleur.
  • 3.8 Récupérateur de condensat : il récupère les condensats générés dans l’échangeur 3.1 mais aussi ceux éventuellement générés par la conduite de descente 2.9, il doit être impérativement étanche.
  • 3.9 Récupérateur de condensat : il récupère les condensats générés dans les échangeurs 3.2 et 3.3, il doit être impérativement étanche. Les récupérateurs de condensats 3.8 et 3.9 ne peuvent en aucun cas être communs.

4. Conditionnement et exploitation

  • 4.1 Mitigeur d’air : il permet de régler la différence de température entre le gaz et l’air, ce qui permet d’optimiser le fonctionnement du brûleur.
  • 4.2 Filtre final : constitué d’un vide cendre dont l’étanchéité parfaite a impérativement été vérifiée, c’est le dernier filtre avant le brûleur. Ce vide cendre à usage détourné récupère aussi les éventuels condensats résiduels.
  • 4.3 Turbine air : elle fournit le brûleur en air de combustion et l’excès est utilisé en tirage induit dans le conduit de fumées 4.15. Il convient donc de s’assurer que son débit est suffisant à satisfaire les deux besoins. Si la turbine est surdimensionnée, il se peut que le tirage induit génère un débit supplémentaire non désiré au niveau du brûleur. Une vanne de restriction générale peut alors être ajoutée. Le rendement du tirage induit est forcément moindre que l’injection direct d’air dans le brûleur. C’est ce qui permet d’effectuer un réglage avec une telle disposition.
  • 4.4 Turbine gaz : c’est la turbine qui aspire le gaz au travers de l’ensemble du système. Cette dernière doit être absolument étanche et donc de construction qualitative. Une turbine du même type que celles utilisées dans les cabinets dentaires peut convenir.
  • 4.5 Clapet anti retour : par mesure de sécurité, en cas de déflagration, de retour de gaz, ou de panne de moteur de la turbine 4.3, il protège cette dernière ainsi que le circuit d’air.
  • 4.6 Clapet anti retour : il assure la même fonction que le clapet anti retour 4.5 du circuit d’air et évite surtout un retour de gaz de la réserve 4.9.
  • 4.7 Vanne motorisée : elle permet d’orienter le gaz vers le brûleur ou vers le torchère de démarrage 4.9. Elle s’utilise en tout ou rien.
  • 4.8 Clapet anti retour : il évite un retour de flamme du torchère 4.8, il doit être complété par une grille anti retour.
  • 4.9 Torchère de démarrage : il reçoit les gaz produits pendant la phase de démarrage et intègre une veilleuse qui tente continuellement d’allumer les gaz. Un système de détection de flamme (thermocouple ou optique) signale ensuite à la partie commande la présence de la flamme. Le cycle de démarrage du brûleur pourra alors commencer.
  • 4.10 Réservoir de pression : il permet de stocker une légère quantité de gaz en amont du brûleur, ce qui permet d’alimenter pendant de courts instants le régulateur de pression 4.11.
  • 4.11 Régulateur de pression : il permet, avec l’aide de la réserve 4.10, d’effacer temporairement une baisse de débit de gaz. En effet, l’évolution du foyer dans le gazogène conserve toujours un côté aléatoire propre au procédé. Il peut par exemple être constitué d’un soufflet de suspension de camion, qui capte la pression de sortie vers le brûleur puis agit sur une vanne sphérique.
  • 4.12 Répartiteur : il permet de répartir le flux d’air entre le brûleur (fraction destinée à la combustion) et l’extracteur de tirage induit 4.16.
  • 4.13 Brûleur : le brûleur mélange l’air et le gaz dans des conditions optimales, c’est un sujet à part entière. Un brûleur à gaz de bois doit être structuré très différemment d’un brûleur à gaz naturel ou à propane, le gaz de bois étant de nature très différente et contenant notamment du diazote.
  • 4.14 Chaudière : c’est une chaudière pouvant recevoir un brûleur à air soufflé. Il peut donc aussi bien s’agir d’une chaudière à gaz que d’une une chaudière à fioul.
  • 4.15 Échangeur : c’est l’échangeur qui permet de transformer la chaudière en version condensation.
  • 4.16 Conduit d’extraction : il permet d’extraire les fumées refroidies, comme dans toutes chaudière à condensation, par l’intermédiaire d’une extraction forcée. Dans ce cas, il s’agit d’une extraction par tirage induit via la turbine 4.3.

Conclusion

Nous pourrions prendre peur en voyant la complexité apparente du schéma d’une telle installation. Mais en réalité, c’est une fois de plus la recontextualisation de certains composants qui permettrait de la réaliser relativement simplement. Comme nous l’avons mentionné avant, une telle installation comporte des risques. Il serait nécessaire de traiter aussi de la manière avec laquelle la recontextualisation d’autres composants gèrerait l’aspect sécurité. En effet, il existe des microcontrôleurs et capteurs accessibles aux particuliers. Il devient rapidement possible de se mettre en sécurité par la redondance des systèmes de détection des fuites de gaz par exemple. Comme on le pratique dans l’industrie, plusieurs contrôleurs devraient effectuer les mêmes tâches de mesure simultanément. C’est la redondance qui permettrait, dans un contexte de loisirs techniques, de gérer correctement l’aspect sécurité (lié à la détection). Il conviendrait de continuer à utiliser cette philosophie aussi dans l’aspect commande du système. Dans ce cas, les bonnes pratiques de programmation rigoureuses, n’étant que conceptuelles, ne rencontrent aucunes barrières à leur application dans le cadre d’une réalisation non industrielle. Nous n’avons pas présenté de suggestion de conception d’un brûleur adapté au gaz de bois, ce que nous ferons peut être dans la cadre d’un autre article.

Accélérateur de tirage pour démarrage des poêles et chaudières à bois.

L’extracteur à tirage induit.

Quel enfer de ne pas réussir facilement le démarrage à froid d’un poêle à bois ou d’une chaudière ! De la fumée peut se répandre en dehors de l’appareil ce qui n’est pas très commode. Certaines chaudières à flamme inversée possèdent des extracteurs, sortes de ventilateurs dans lesquels passent les fumées. Dans ce cas une aspiration forcée empêche la fumée de sortir de l’appareil lors de sa mise en route. La turbine spéciale doit alors résister à la température des fumées. Il y a une solution possible qui ne requiert pas l’utilisation d’une turbine spéciale résistante à la chaleur et qui peut s’adapter à n’importe quel poêle, chaudière ou cheminée. C’est ce que nous proposons de développer dans cet article.

Nous proposons une solution originale : en injectant de l’air dans un tube coaxial situé dans le conduit de cheminée, nous créons ce que l’on appelle un tirage induit. Il est évident que l’air froid provoque la condensation, mais ce système ne doit servir qu’à l’allumage. Cet air injecté par une turbine -qui peut n’être qu’un simple gonfleur de matelas- génère une dépression induite dans le conduit de fumée. Le coût de la turbine est très réduit (environ 15€), elle peut être de technologie variable. Si un gonfleur de matelas convient, une turbine de forge peut aussi faire l’affaire (plus solide mais plus coûteuse). Il peut être particulièrement pertinent d’implanter ce dispositif au plus haut du conduit de cheminée. Ainsi, nous évitons le problème du refroidissement du conduit, et accélérons davantage la montée en température de ce dernier lors du démarrage du poêle.

Schéma

Nomenclature explicative

  • 1. Appareil de chauffage : chaudière ou poêle à bois dont on souhaite faciliter le démarrage.
  • 2. Conduits de fumée.
  • 3. Injecteur d’air : concentrique au conduit de fumée et orienté, bien évidemment, vers la sortie des fumées, il permet d’injecter le flux d’air qui génère le tirage induit.
  • 4. Évacuateur de condensat : habituellement situé dans l’axe du conduit, il convient d’en recréer un autre, désaxé, la place centrale étant occupée par l’injecteur 3.
  • 5. Tuyau d’injection horizontal : il doit être suffisamment long afin d’éviter que la conduction thermique n’augmente excessivement sa température au niveau du manchon 7 en risquant d’endommager ce dernier. Plus La longueur L est importante, plus la convection a tendance à refroidir le tuyau.
  • 6. Vanne de visite et de curage : elle permet d’inspecter et nettoyer l’injecteur 3.
  • 7. Manchon en P.T.F.E. : ce manchon en plastique résistant à la chaleur permet d’isoler thermiquement la turbine du tuyau 5. C’est d’autant plus nécessaire qu’il s’agit d’un gonfleur de matelas par exemple.
  • 8. Vanne : à l’arrêt de la turbine 9, elle permet de limiter le passage naturel d’air lorsque le poêle ou la chaudière est en fonctionnement normal et réduire ainsi le refroidissement des fumées.
  • 9. Turbine : constituée d’une pompe de matelas pneumatique, d’une turbine de forge etc. elle génère le flux d’air nécessaire au tirage induit.