Salle de bain, orages et électricité

Introduction

Les normes de sécurité sont prévues pour êtres interprétables et applicables par tous. Cependant, imparfaites, elles ne prennent pas en compte l’intégralité des cas particuliers. Dans le cadre des risques électriques dans les salles de bain, nous proposons une amélioration spécifique des liaisons équipotentielles. Cette amélioration consiste en une extension des éléments reliés à la terre afin de préciser l’environnement équipotentiel autour de l’utilisateur. Nous rappelons également quelques principes de base éclaircissant les risques électriques, particulièrement en présence d’eau.

Liaison équipotentielle de haute importance

Même si les tuyaux d’alimentation du mitigeur de votre douche ou baignoire sont en matériaux isolants, il faut impérativement créer une liaison équipotentielle entre le mitigeur et la bonde de la baignoire ou de la douche. Si la bonde est en matériau plastique, donc isolant, il faut installer juste après, un tuyau d’évacuation métallique en liaison avec le mitigeur. Cette liaison équipotentielle réduit considérablement la fraction de courant électrique susceptible, en cas d’évènement extérieur, de traverser le corps de haut en bas. Dans le cas de surtensions élevées, chaque différence d’impédance même infime entre deux câbles en cuivre peut alors avoir une influence sur les circulations de courants. Il ne faut donc pas hésiter à utiliser plusieurs conducteurs de forte section, 3 x 16 mm² par exemple entre le mitigeur et la bonde. Dans tous les cas, même avec cette disposition, il est fortement déconseillé de prendre une douche en cas d’orage. Avec des valeurs de tensions aussi élevées que celles que l’ont peut trouver sur le réseau ou dans les différents matériaux environnants en cas d’impact de foudre, l’air lui même peut induire des différences de potentiel.

Schéma montrant l’apparition d’une probable différence de potentiel et précisant les liaisons équipotentielles possibles pour s’en prémunir.

Les origines de la différence de potentiel

Il est souvent écrit qu’il est déconseillé de prendre une douche ou un bain en cas d’orage. Des différences de potentiel peuvent en effet se créer, soit par une surtension sur le réseau électrique, générant une fuite à la masse, laquelle peut remonter par les appareils en contact avec les canalisations (chaudière, surpresseur, circulateurs, etc.) soit en remontant par la terre lorsque la foudre touche le sol par exemple. Notez que plus vous serez entouré d’éléments reliés ensembles par des conducteurs, plus l’environnement sera semblable à une cage de Faraday. N’oublions pas que tous les appareils électriques tels que les chaudières ou surpresseurs doivent être reliés eux aussi à la terre, laquelle est reliée aux parties métalliques de la douche. L’objectif est précisément que tout l’entourage du corps humain soit au même potentiel au moment d’une surtension, interdisant toute circulation de courant.

Il est à noter aussi que dans les régions montagneuses, le sol est mauvais conducteur, d’où les difficultés à obtenir une prise de terre peu résistante. Dans ces cas là, entre la fosse septique dans laquelle ruisselle l’eau provenant de la douche et la prise de terre elle même (piquet ou tresse enterrée), on peut imaginer que, lors de phénomènes orageux, se créerait une différence de potentiel suffisante pour générer la circulation d’un courant électrique. Il est donc extrêmement important de relier, à minima, la bonde du receveur à la terre, et, dans l’idéal, une fraction de tuyau d’évacuation, comme suggéré ci-dessus.

Le cas des baignoires

Si vous avez une baignoire en matériau synthétique : résine ou autre plastique, le problème est exactement le même que dans la douche. En revanche, si votre baignoire est métallique et qu’elle est raccordée correctement à la terre, vous vous trouvez pratiquement dans une cage de faraday. Il faut cependant toujours vérifier que les robinets sont bien en liaison équipotentielle, eux aussi, avec la baignoire et/ou la bonde. Soyez vigilant, autrefois on ne fixait pas toujours les robinets sur les baignoires, parfois ils étaient fixés au mur et la baignoire était alors indépendante du point de vue électrique. Cette dernière situation est à proscrire, vous devez réaliser une liaison équipotentielle.

Précautions complémentaires

Les normes dites de sécurité et les obligations réglementaires imposent l’utilisation d’interrupteurs différentiels 30 mA sur les réseaux domestiques depuis 1991. Cependant, nous recommandons, comme c’est d’ailleurs souvent le cas, de protéger les lignes des salles d’eau avec des interrupteurs différentiels de plus grande sensibilité. Des interrupteurs différentiels 10 mA sont disponibles sur le marché. Nous recommandons donc l’utilisation de ce matériel aussi sur chaque appareil directement relié au réseau de plomberie : chaudière, surpresseur, circulateurs, etc. En revanche il faut bien comprendre que cette précaution n’est pas nécessairement capable d’améliorer la situation en cas d’orage. Lors d’une violente surtension, le courant de fuite de l’installation générale dépasse allègrement les 30 mA, et la sensibilité accrue de 10 mA ne procurera pas pour autant une réduction du temps de coupure. Seulement, l’éventuelle fuite à la masse d’un appareil serait détectée même si sa résistance est pus élevée, en comparaison de celle que procurerait un courant de fuite compris entre 10 et 30 mA. Ainsi, on réparerait ou remplacerait l’appareil qui serait susceptible de faire passer une surtension dans la masse en cas d’incident.

Vous pouvez également faire installer des parasurtenseurs, capables d’évacuer des surtensions. Ils fonctionnent de plusieurs façons possibles, il peut s’agir de simples éclateurs, robustes mais moyennement performants (mieux que rien) ou de systèmes à varistances ou diodes transil, plus précis et efficaces. Certains utilisent une combinaison de ces différentes technologies. Les coûts sont variables, un parasurtenseur coûtera entre 50 et 700 euros environs, selon ses caractéristiques. Ils protègent théoriquement le matériel, mais nous ne nous risquerons pas à dire que l’élimination de la surtension ne protège pas aussi les personnes, lors de phénomènes plus subtiles.

Eau et électricité

L’eau pure est considérée comme un diélectrique, c’est à dire un matériau isolant. Alors, en quoi représente-t-elle un danger en présence d’électricité ?

Tout d’abord, l’eau de notre environnement n’est jamais pure, elle contient des sels minéraux dissouts, sous forme d’ions, lesquels permettent la circulation d’un courant électrique. C’est le cas de l’eau du robinet, puisqu’il s’agit d’eau dite « minérale ». De plus, la surface de notre peau contient des sels minéraux, dont le sel lui même. La présence d’eau sur la peau augmente sa conductivité (ou réduit sa résistance) en dissolvant ces sels minéraux. Ensuite, par sa nature de liquide, elle peut s’infiltrer dans les appareils électriques pourtant recouverts de matériaux isolants, comme un sèche-cheveux en plastique, créant ainsi un chemin conducteur vers les fils sous tension. C’est l’aspect liquide de l’eau qui permet la création de ces chemins conducteurs en s’infiltrant dans les appareils ou en créant des nappes au sol, parfois peu visibles, et dont le contact avec un conducteur sous tension peut être invisible.

C’est pour ces raisons qu’il ne faut jamais toucher d’appareil électrique lorsque l’on a les mains ne serait-ce qu’humides, ni utiliser aucun appareil électrique en présence d’eau, d’une façon générale.

Schéma de liaison à la terre et interrupteur différentiel

Le sujet de la terre est vaste et génère beaucoup de confusions. Le sol n’est pas forcément un « puits magique » d’électricité. La prise de terre d’un réseau électrique et le modèle électrostatique de la terre permettant de comprendre les phénomènes orageux (que nous ne traiterons pas ici) sont deux problématiques distinctes. Généralement, si le corps humain touche une phase, un courant est susceptible de le traverser en passant dans la terre, dans la plupart des habitations. Il y a une raison précise à cela : le distributeur d’électricité a intentionnellement relié le neutre à la terre, et ce, avant l’arrivée du réseau dans votre habitation. En d’autres termes, c’est ce lien du neutre avec la terre qui nous met potentiellement en danger ! Ce n’est pas le cas avec tous les autres schémas de liaison à la terre, sujet vaste que nous vous invitons à découvrir par vous même.

Bien que relier le neutre à la terre représente un danger d’un certain point de vue, nous le faisons parce qu’il devient facile de vérifier que les fuites de courant ne peuvent perdurer. En effet, en touchant la masse d’un appareil relié à la terre, un fil dénudé provoque, si possible, un court-circuit qui est interrompu par un fusible ou disjoncteur. Mais ce contact accidentel n’engendre pas toujours un passage franc du courant électrique (définition du court-circuit). Dans ce cas, le fusible ou disjoncteur n’y peut rien. Nous ne sommes cependant pas démunis face à cette situation, car, à priori depuis 1889, existe le concept d’interrupteur différentiel. L’interrupteur différentiel « compare le courant qui arrive avec celui qui repart ». Or, un conducteur touchant la terre provoque un courant électrique qui contourne ce dispositif, parce que le distributeur d’électricité a relié le neutre à la terre, mais pas chez vous : en amont, au niveau du « transformateur secteur » ! Dans un tel cas, le dispositif différentiel ouvre le circuit « parce qu’il estime avoir perdu du courant ».

Schéma montrant un défaut provenant d’un appareil non raccordé à la terre, et traversant le corps humain dans le cas du régime TT.

Le corps humain ne supporte pas longtemps de « fortes » intensités. Il est admis communément que la paralysie respiratoire survient avec seulement 30 mA pendant 0,5 s. D’où la nécessité d’être capable de couper le courant à un seuil de fuite d’au maximum 30 mA, et si possible en quelques centièmes de seconde. Vous comprendrez alors qu’il est extrêmement important d’être équipé d’un tel dispositif. Car, en théorie, si un courant de cette valeur commence à vous traverser via un sèche-cheveux par exemple, en passant ensuite par la terre via la liaison équipotentielle de votre salle d’eau, le dispositif différentiel a de bonnes chances de vous sauver la vie. On constate effectivement que la mise à la terre nous met en danger d’une part mais que d’autre part, elle permet l’utilisation de dispositifs fiables et accessibles financièrement, capables de détecter les fuites de courant : l’interrupteur ou le disjoncteur différentiel. Pourtant, en France, l’obligation d’installer dans les résidences des interrupteurs différentiels ayant un seuil de déclenchement inférieur ou égal à 30 mA n’existe que depuis 1991 !

Les sèche-cheveux, ces caricaturaux meurtriers dont la conception est critiquable

Tous les appareils électrodomestiques ne sont pas obligatoirement reliés à la prise de terre. C’est étrangement le cas des sèche-cheveux, lesquels obéissent apparemment à une norme sur l’isolation. C’est à dire que si leur structure est totalement entourée de plastique par exemple, on juge qu’il n’est pas obligatoire d’y insérer une masse métallique reliée à la terre.

Et pourtant, souvenez vous, nous avons vu plus haut que l’eau, bien que mauvaise conductrice, est extrêmement dangereuse. En s’infiltrant dans les appareils, elle y créé des chemins conducteurs d’électricité. Si tous les sèche-cheveux avaient été munis d’une masse métallique reliée à la terre, par exemple une feuille d’acier inoxydable entourant la turbine et la résistance, nombres d’accidents mortels auraient pu être évités, et ce y compris avec des interrupteurs différentiels à la sensibilité moindre que 30 mA (300 ou 500 mA).
En effet, le courant électrique tend à circuler là où la résistance est la plus faible et là où la différence de potentiel est maximale : il préfèrerait la tôle en inox plutôt que le corps humain, ou même s’il se partage entre les deux, des seuils de fuites de courants supérieurs à 30 mA seraient probablement atteints. C’est l’objectif de la liaison à la terre des appareils à structure métallique comme les machines à laver. Pourquoi ne pas fabriquer des sèche-cheveux reliés à la terre ? Nous n’avons pas vraiment la réponse.

De plus, le bon sens veut que l’on comprenne que ces appareils sont utilisés dans des conditions où l’utilisateur, même s’il est averti, peut accidentellement et subitement avoir les mains humidifiées : si un flexible de douche remplissant une bassine se retourne brutalement par exemple. De plus, des accidents tels que celui représenté de façon plus ou moins réaliste dans le film les trois frères, où l’huissier est électrisé dans une baignoire par un sèche- cheveux restent possibles.

Dans tous les cas retenez ceci : n’utilisez pas un sèche-cheveux (ou un autre appareil électrique) avec une masse d’eau ou une circulation d’eau à proximité. Videz les bassines et baignoires, rangez votre environnement, ne laissez pas d’eau couler d’un robinet, et, si possible, utilisez le sèche-cheveux dans votre chambre ou votre salon, loin de l’eau, comme avec tout autre appareil électrique. Méfiez vous également des mixers en cuisine, notamment les petits appareils tenus en mains : souvent relativement étanches, certains ont encore une étanchéité douteuse compte tenu de leur potentiel proximité avec les liquides.

Conclusion

Il ne faut pas hésiter à améliorer les normes de sécurité, en étant plus exigeants et plus précis, à la fois sur les valeurs seuils, comme pour les interrupteurs différentiels, et à la fois sur les champs d’applications, comme pour les liaisons équipotentielles ou la conception des appareils (lorsque cela vous concerne). N’oubliez pas que la sécurité n’a pas de prix, le surcoût d’un parasurtenseur ou d’un interrupteur différentiel de plus est à comparer au coût global d’un projet d’habitation.

Compresseur avec élimination du risque de contamination.

Introduction

Dans le cadre du stockage pressurisé de certains gaz, comme le gaz de bois (gaz mortel), le biogaz ou encore le dihydrogène, il est très important d’éviter la contamination de le réserve par de l’air. En effet, comprimer du dioxygène avec un gaz inflammable peut, en plus de réduire la quantité d’énergie stockée dans la réserve, transformer cette dernière en véritable bombe. Nous avions déjà proposé un article sur la recontextualisation des compresseurs de réfrigérateurs, adaptés à l’évitement des contaminations car totalement étanches, mais procurant un débit limité. Nous ne pourrions pas, par exemple, faire fonctionner un gazogène de dimensions usuelles avec un seul de ces compresseurs. Avec la solution que nous proposons, il est possible d’utiliser un compresseur courant, bon marché, tels que ceux destinés à l’air, tout en surveillant le risque de fuites (ou plutôt d’intrusion) à l’admission. De plus, le moteur qui entrainerait ce compresseur pourrait être de toute nature : électrique, thermique, hydraulique, etc. Veuillez noter que le système ci dessous ne mentionne pas les soupapes de sécurité et autres clapets anti retour qu’il conviendra d’ajouter comme dans toute installation de compression.

Nomenclature explicative

  • 1. Bac thermiquement isolé et rempli d’huile.
  • 2. Compresseur d’air conventionnel.
Compresseur d’air conventionnel bicylindre aluminium/fonte
  • 2.1 Port d’admission d’air.
  • 2.2 Port de refoulement.
  • 3. Chaine de transmission.
  • 3.1 Poulie réceptrice : la poulie d’origine est souvent à gorge trapézoïdale, et, qui plus est, munie d’un ventilateur. Pour fonctionner dans le bain d’huile, elle devra impérativement être remplacée par un pignon à chaine.
  • 3.2 Carter de protection anti éclaboussures : il peut être pertinent d’utiliser un arbre de transmission intermédiaire, puisque les projections d’huile se feraient essentiellement dans le plan de la chaine (défini par les axes des pignons).
  • 4. Moteur d’entrainement : ce dernier peut être de toute technologie, ce n’est qu’un concept qu’il conviendra d’adapter à votre contexte.
  • 5. Tube de visualisation du niveau d’huile du compresseur.
  • 5.1 Port de remplissage d’huile du compresseur, dans sa configuration normale.
  • 5.2 Œilleton de contrôle du niveau d’huile du compresseur, dans sa configuration normale. Ici, il n’est plus utilisé, il est mentionné à titre indicatif.
  • 5.3 Port de vidange du compresseur : il est utilisé ici pour relier le bas du tube de visualisation 5.1, permettant ainsi la vidange depuis l’extérieur du dispositif.
  • 5.4 Détecteur inductif : il peut être doublé afin de détecter à la fois un niveau trop faible, au cas où la pression d’arrivée du gaz serait en mesure de refouler l’huile dans le bac 1, aussi bien qu’un niveau trop haut, lequel supposerait une migration de l’huile contenue dans le bac 1 vers le carter du compresseur.
  • 5.5 Flotteur avec aimant ou masse métallique embarquée, il permet d’activer le ou les détecteurs inductifs mentionnés ci-dessus.
  • 5.6 Vanne de vidange du compresseur.
  • 5.7 Vanne de remplissage d’huile du compresseur.
  • 5.8 Pot de remplissage d’huile du compresseur.
  • 5.9 Vanne d’isolement et d’équilibrage des pressions : elle permet d’isoler l’arrivée de gaz lors de l’opération de correction du niveau d’huile du compresseur et permet de mettre le carter d’huile du compresseur dans une atmosphère de gaz, à la même pression qu’à l’admission.
  • 5.91 Vanne de mise à l’air libre : elle permet de chasser la gaz qui doit se déplacer lorsque l’on corrige le niveau d’huile. Il est pertinent de la coupler mécaniquement à la vanne 5.9 afin d’éviter une fuite de gaz.
  • 6. Tube de visualisation du niveau d’huile du bac 1.
  • 6.1 Flotteur avec aimant ou masse métallique embarquée, il permet d’activer le détecteur inductif 6.2 en cas de niveau d’huile faible. La migration de l’huile du carter du compresseur vers le bac 1 est déjà gérée par le tube 5 et ses accessoires. Une baisse du niveau d’huile dans le bac 1 peut être synonyme d’une fuite à l’admission. Ce phénomène pourrait survenir avec de l’air sans l’immersion dans l’huile que nous proposons dans le cadre de cet article.
  • 6.2 Détecteur inductif.
  • 6.3 Reniflard de mise à l’air libre.
  • 6.4 Vanne de vidange du bac 1, il permet aussi d’évacuer les précipités ainsi que l’eau qui pourrait se retrouver en fond de cuve.
  • 7. Échangeur thermique : il permet de réutiliser les calories récupérées par l’huile sur la culasse du compresseur. Cette réutilisation peut prendre place dans n’importe quel contexte : préchauffage d’eau chaude sanitaire ou chauffage des locaux, etc.
  • 8. Détecteur de gaz (en cas de fuite)
  • 9. Enceinte de protection : elle permet d’éviter la contamination de l’huile par la poussière ambiante et évite les projections d’huile liée aux éventuels remous.
  • 10. Échangeur thermique au refoulement, on pourrait l’attribuer à la partie traitement, mais cette dernière (filtration, séchage, etc.) doit prendre place après le refroidissement du gaz.
  • 11. Déshuileur : il permet de retirer l’huile qui pourrait se retrouver dans le gaz comprimé. En général, un compresseur rejette toujours une petite quantité d’huile mélangé au gaz comprimé au refoulement. Cette huile doit en toute logique être celle du carter de lubrification. Dans notre cas, si une fuite à l’admission se produisait, nous serions susceptible de retrouver de l’huile en provenance du bac d’immersion dans le tube11.
  • 11.1 Détecteur inductif.
  • 11.2 Flotteur avec aimant ou masse métallique embarquée, il permet d’activer le détecteur inductif mentionné ci-dessus.
  • 11.3 Vanne de vidange du tube 11. La vidange de ce tube ne requiert en général pas de vanne de mise à l’air libre supplémentaire, car la conduite est supposée être sous pression où contenir une pression résiduelle (selon la localisation des clapets anti retour notamment).

Conclusion

En ajoutant une astuce technologique à une autre, préexistante, nous pouvons nous affranchir de certaines nécessités. Nous pourrions en effet être tentés d’utiliser un compresseur haut de gamme spécialisé dans les « gaz sensibles », mais beaucoup trop couteux en terme de pièces détachées et d’acquisition. Dans ce cas, la gestion de l’immersion dans l’huile est une solution « détournée » relativement facile à mettre en œuvre. Ainsi, il devient possible de gérer les risques plutôt que de conclure à l’impossibilité (en sécurité) de comprimer des « gaz sensibles » dans un contexte où la ressource financière est insuffisante pour l’acquisition de matériels spécialisés.

Dégazeur de radon

Introduction

Le radon est un gaz radioactif naturellement présent dans les sols, il est issu de la désintégration du radium. Il existe des cartes vous permettant de connaitre le potentiel radon de votre commune. Le risque principal d’exposition, le plus souvent évoqué, n’est autre que l’habitat intérieur. Nous vous invitons à vous renseigner au sujet des moyens de limiter la concentration de radon dans l’air intérieur. Nous suggérons, pour notre part, une particularité technique rarement évoquée au sujet de la ventilation des locaux : utiliser une V.M.C. double flux, mais en mettant l’habitat en légère surpression (le ventilateur d’injection devant être légèrement plus puissant que celui d’extraction). En effet, en utilisant une V.M.C. simple flux, l’habitat est en légère dépression, les gaz contenus dans le sol ont alors tendance à migrer plus facilement dans les caves et les maçonneries poreuses. C’est le contraire avec une légère surpression. Toutefois, il vaut mieux ventiler même en simple flux, plutôt que de n’avoir aucune solution. Le risque d’accumulation du radon est ainsi évité.

Dans le cadre de cet article, nous présentons une solution permettant d’éliminer le risque d’inhalation de radon dans les salles d’eau. En effet, le radon est dissout dans l’eau, il s’infiltre dans les réservoirs souterrains et dans les nappes phréatiques dans lesquelles l’eau est pompée. Ce risque n’est pas spécifique aux régions repérées en rouge sur les cartes de l’IRSN. Il est présent dès lors que l’on vous distribue de l’eau issue de réserves souterraines n’ayant pas connu de rupture de pression depuis son pompage. Cette vidéo vous montre une expérience permettant de mesurer l’importance du problème. Si l’eau relâche le radon au moment où elle sort du robinet dans la douche, il est alors évident qu’ajouter une « douche » intermédiaire entre la chute de pression et l’utilisation permet de retirer les gaz dissouts dans l’eau. Le dégazage implique donc de provoquer une chute de pression, c’est en effet cette dernière qui est responsable de la migration des gaz dissouts dans l’eau vers l’air ambiant.

Avec la solution que nous proposons, il est donc nécessaire de recréer de la pression après avoir dégazé l’eau. Nous pouvons proposer au moins trois solutions. La première consiste à placer le réservoir dans les combles, ou, plus exactement au dessus du niveau de prélèvement (point le plus haut de votre réseau d’eau courante). La seconde consiste à utiliser un surpresseur, ce qui implique une dépense d’énergie électrique et une certaine maintenance. Les personnes ayant des puits ou des sources connaissent déjà très bien ce système. Il reste une troisième solution plus originale qui consiste à utiliser la pression du réseau dans un dispositif permettant de la transmettre à l’eau dégazée. Comme toute machine physique, elle génèrera des pertes. Mais, si, par exemple, le pression de l’eau courante à dégazer est d’environ 2 bars, il doit être possible de récupérer l’intégralité du volume à une pression d’environ 1 bar. Cela permet de prendre en compte le rendement, lequel serait alors d’environ 50%. Pour résumer il s’agirait d’une pompe utilisant la pression d’origine comme énergie motrice et repompant l’eau dégazée, il s’agirait d’un surpresseur n’utilisant pas d’électricité, mais nécessitant un réservoir sous pression de la même façon qu’une version à pompe électrique. Enfin, s’il est possible de se contenter de la pression gravitaire donnée par un réservoir situé dans les combles, il est aussi possible de récupérer l’énergie de la pression d’eau pour d’autres applications : vu que seul le débit est facturé, il serait dommage de ne pas la récupérer. Ainsi, nous pouvons imaginer comprimer de l’air, pour les bricoleurs utilisant des outils pneumatiques. Nous publierons probablement un article à ce sujet.

Schéma

Nomenclature explicative

  • 1. Arrivée d’eau courante à dégazer.
  • 2. Robinet à flotteur : il permet de limiter l’alimentation du réservoir 7, il est très fortement recommandé d’ajouter un trop plein pour éviter un potentiel dégât des eaux.
  • 3. Passe cloison étanche à l’eau.
  • 4. Exutoire : il peut avantageusement être constitué d’un aérateur de citerne en laiton, garantissant une répartition homogène de l’eau sur toute la périphérie du cône 5.
  • 5. Cône en acier inoxydable : il est facile de se procurer des cônes à « croquembouche », ce sont des supports qui permettent de réaliser les pièces montées en pâtisserie. La forme conique permet au film d’eau de s’amincir au fur et à mesure de sa descente, ou de se transformer en filets. Plus la couche d’eau est mince et plus le dégazage est efficace.
  • 6. Réservoir du dégazeur : un fut en plastique adapté à la taille du cône peut convenir à sa réalisation.
  • 7. Réservoir gravitaire : ce réservoir à pression atmosphérique serait situé dans les combles. Cela implique que si 3 mètres séparent votre pommeau de douche du réservoir, la pression en sortie sera de 0.3 bars.
  • 8. Sortie d’alimentation vers le réseau d’eau courante.
  • 9. Arrivée d’air : soigneusement filtrée (pour éviter les risques sanitaires), elle peut être soit active, c’est à dire être injectée avec une V.M.C. double flux, soit passive, directement reliée à un filtre à air dans le cas d’une V.M.C. simple flux.
  • 10. Extraction d’air : elle doit être reliée à la V.M.C. (ou à l’extraction de votre V.M.C. dans le cas d’une version double flux).

Conclusion

Le problème du radon dans les salles d’eau est très probablement sous estimé et l’inhalation de radon peut être très significative sur le long terme, surtout lorsque vous aimez chanter longtemps sous la douche. Ce problème est souvent ignoré alors que les conséquences sont graves et les solutions simples. On estime que le radon est en France la seconde cause de cancer du poumon.

Épurateur de fumées pour moteur Diesel stationnaire.

Introduction

On sait depuis longtemps que le fait de d’injecter des gaz d’échappement dans l’eau, par barbotage, permet de piéger les particules de suies. C’est ce procédé de barbotage qui est utilisé dans le principe du moteur Pantone, au sujet duquel nous sommes sceptiques.

Il est toutefois possible que l’adjonction de vapeur d’eau de barbotage permette une recirculation des gaz d’échappement à la manière des vannes E.G.R. mais à priori sans encrassement des conduites et du moteur, ce qui reste à démontrer. Si vous avez une expérience du procédé « Pantone » sur moteur Diesel, contactez nous, car nous sommes curieux de savoir si l’eau de barbotage se noircit ou si l’encrassement des conduites est effectivement évité sur le long terme. Si l’on considère qu’il ne se produit, dans un réacteur Pantone, aucune réaction particulière, il ne diffèrera d’un système E.G.R. conventionnel que par l’adjonction de vapeur d’eau dans les gaz recyclés.

Dans tous les cas, si l’eau de barbotage noircit, c’est qu’elle piège bel et bien le carbone des suies et supprime la pollution directe à l’échappement. Ce procédé reste intéressant surtout dans le cas d’une installation stationnaire, la suie récupérée dans l’eau serait à recycler ultérieurement.

Dans le système que nous proposons, nous faisons surtout barboter l’intégralité des gaz d’échappement dans un carburant huileux afin de réutiliser le carbone ainsi piégé.

Schéma

Nomenclature explicative

  • 1. Moteur Diesel à injection conventionnelle : l’injection conventionnelle est de mise compte tenu de l’utilisation de l’huile végétale comme carburant. Il peut par exemple s’agir d’un moteur de compresseur, de groupe thermodynamique (frigorifique, pompe à chaleur, demie pompe à chaleur) ou de groupe électro-générateur.
  • 2. Pot d’échappement : sortie d’échappement détournée du moteur.
  • 3. Échangeur thermique : ce premier échangeur est celui de type Pantone re-réchauffant la vapeur d’eau obtenue par bullage dans le barboteur 13.
  • 4. Échangeur thermique : ce second échangeur thermique est celui qui permet l’évaporation de l’eau dans le barboteur 13.
  • 5. Échangeur thermique : ce dernier échangeur thermique est destiné à la récupération de la chaleur résiduelle pour tout autre usage tel que le chauffage des habitations.
  • 6. Barboteur réservoir d’huile : il s’agit du réservoir principal de carburant (huile végétale) dans lequel passent les gaz d’échappement. En barbotant dans l’huile, les suies sont piégées et le carbone ainsi dissout peut être réutilisé dans le moteur. Le barbotage génère de la mousse et il convient d’ajouter plusieurs grilles dans le réservoir afin de l’arrêter. La hauteur même du réservoir doit être telle que la mousse n’atteigne pas facilement la sortie. La conception doit être ajustée expérimentalement.
  • 7. Réservoir de tranquillisation : le rôle de ce réservoir est de tranquilliser le carburant afin d’en ôter les bulles de gaz résiduelles qui pourraient entraver le bon fonctionnement de l’injection. C’est depuis ce réservoir qu’est prélevé le carburant qui sera envoyé au moteur.
  • 8. Jauge de niveau d’huile combustible : cette jauge permet simplement de visualiser le niveau de carburant.
  • 9. Déshuileur : il permet d’empêcher l’emport de gouttelettes d’huile par les gaz d’échappement.
  • 10. Vanne trois voies : elle permet d’ajuster la quantité de gaz d’échappement recyclés ou envoyés dans le système Pantone (le système Pantone peut être considéré comme étant l’ensemble barboteur 13 + échangeur 3) .
  • 11. Barboteur eau : c’est le barboteur qui filtre les gaz d’échappement rejetés à l’extérieur. Ici, il est équipé d’un flotteur à niveau constant afin de ne pas avoir à se soucier du réapprovisionnement en eau.
  • 12. Échappement définitif : pot d’échappement évacuant les gaz à l’extérieur du bâtiment.
  • 13. Barboteur eau : il s’agit du barboteur « Pantone » emportant de la vapeur d’eau grâce au réchauffage des gaz d’échappement par l’échangeur 4.
  • 14. Mélangeur : c’est une vanne trois voies permettant de gérer le mélange air/gaz recyclés.
  • 15. Filtre à air : filtre à air du moteur Diesel.
  • 16. Filtre à huile : pré-filtre à carburant.
  • 17. Filtre à huile décanteur : filtre de type décanteur grossier filtrant le carburant transitant entre le réservoir barboteur 6 et le réservoir de tranquillisation 7.
  • 18. Récupérateur de condensats : ce système récupère les condensats issus du refroidissement des gaz d’échappement.
  • 19. Jauge de niveau de condensats : cette jauge permet simplement de visualiser le niveau de condensats.

Quelques détails.

Tous les réservoirs doivent être équipés de vannes de purge, représentées sur le schéma mais non repérées. Il convient, lors de la réalisation d’un tel dispositif, de veiller à ce que les différents échangeurs soient tous situés au dessus du récupérateur de condensats 18, afin que ces derniers s’écoulent correctement dans la bonne direction.

Générateur de mousse de CO2 pour réseau de lances à incendie

Vous êtes vous déjà demandé ce que vous pourriez faire en cas d’incendie dans votre maison ? Si vous avez un extincteur, vous pouvez tenter de l’utiliser avant l’arrivée des pompier. Pour un incendie bien amorcé, un petit extincteur sera utilisé en vain.

Nous proposons d’utiliser la recontextualisation et les loisirs techniques pour gérer un système de lance à incendie très technique propulsant de la mousse de CO2. C’est un bon exemple de la fabrication d’un appareillage très efficace à relativement « haute technicité » dont l’accessibilité au particulier est le résultat de la recontextualisation.

Schéma

Nomenclature explicative

  • Jauge 1 : elle permet de surveiller le niveau d’eau dans le réservoir 2.
  • Réservoir pressurisé 2 : il contient l’eau et l’air comprimé, il est constitué d’un ou plusieurs ballons d’eau chaude sanitaire dont l’usage est détourné. Il peut donc être un appareil recyclé dont les résistances électriques (ne nous intéressant plus dans ce cas) sont fichues. Il convient toutefois d’utiliser un ballon d’une région où l’eau est peu calcaire, et dont l’état général est bon.
  • Vanne d’air 3 : cette vanne permet de purger le dispositif pour les maintenances éventuelles. Il est possible d’automatiser le maintien de la pression d’air via un port auxiliaire.
  • Vanne d’eau 4 : elle permet la vidange pour la maintenance et le remplissage d’eau du réservoir 2.
  • Pressostat 5 : il permet de surveiller la pression d’air dans le réservoir 2, en générant soit une alerte, soit une consigne de remise en pression. L’information qu’il génère peut être utilisée dans un système de sécurité permettant d’informer d’un défaut d’étanchéité, etc.
  • Réservoir d’agent moussant 6 : il contient un agent moussant. Par exemple du bain moussant acheté en supermarché.
  • Vanne réglable 7 : cette vanne réglable doit permettre de modifier le débit d’agent moussant.
  • Venturi 8 : il permet l’aspiration d’agent moussant et son mélange dans l’eau.
  • Bouteille de CO2 9 : c’est la réserve de CO2, elle peut être constituée de bouteilles consignées dédiées à la soudure comme de bouteilles à usage unique utilisées en aquaculture. Il faut être prudent quant à la localisation de cette réserve. En effet, une fuite peut générer un risque important d’asphyxie. Il convient d’équiper d’un détecteur de gaz le local où se situe la réserve.
  • Manodétendeur 10 : il régule la pression du CO2 qui alimente le venturi 12, la valeur de la pression ne doit jamais permettre le refoulement du CO2 dans l’eau. Selon le comportement du venturi 12, il sera peut être nécessaire d’asservir le manodétendeur selon la pression du réservoir 2. À confirmer par l’expérience.
  • Échangeur thermique 11 : cet échangeur thermique est constitué d’une spire de cuivre plongée dans un réservoir d’eau à température ambiante (12°C par exemple, dans une cave) et empêche la détente du CO2 de geler l’eau dans le venturi 12.
  • Venturi 12 : il permet de créer une dépression permettant l’injection de CO2 dans la conduite, bien que le détendeur 10 soit réglé à une pression inférieure à celle du réservoir 2.
  • Sortie 13 : elle alimente le réseau de lance à incendie, qui elles mêmes peuvent être réalisées à partir de matériels à usage détourné.

Incendies d’origine électrique : mythes et réalité.

Introduction

On vous le dit et le répète, les causes principales des incendies d’origine électrique sont les courts-circuits ! C’est ce que disent les journalistes mais c’est très loin d’être la réalité. Il semble que les experts en incendies ainsi qu’une bonne partie de la population utilisent le terme « court-circuit » pour désigner un peu tout et n’importe quoi. La plupart du temps le terme « court-circuit » dans un discours sur la sécurité incendie est un abus de langage. Cet abus de langage récurrent est un véritable problème en ce que les électrotechniciens ont une définition très précise de ce phénomène qui n’est absolument pas, de fait, la première cause d’incendie d’origine électrique. Ces derniers risquent de vous proposer des solutions inappropriées pour un problème de terminologie et faute de communication clairvoyante. Cette mauvaise communication dans le domaine de la sécurité peut être relativement grave, car les populations ne sont pas informées des bonnes pratiques de sécurité. La non explication des véritables phénomènes physiques engendre des initiatives dangereuses.

L’échauffement électrique se produit par effet Joule. La puissance en Watts dissipée par effet Joule se calcule comme suit :  P= R x I².

  • P est la puissance en Watts.
  • R est la résistance électrique exprimée en Ohms.
  • I est l’intensité exprimée en Ampères.

On peut donc obtenir un échauffement dans deux cas :

  1. Lorsqu’un courant « fort » traverse une faible résistance.
  2. Lorsqu’un courant « faible » traverse une certaine résistance.

C’est le courant qui est responsable de l’échauffement des conducteurs et qui en impose la section pour des valeurs données.

Rappelons aussi que le courant se calcule comme suit : I =U/R.

  • U est la tension exprimée en Volts.

On peut donc obtenir un courant fort si R tend vers 0, dans ce cas il s’agit d’un court-circuit, que nous allons définir autrement ci-dessous.

Définition d’un court-circuit 

On peut commencer à expliquer le phénomène par une analyse étymologique. Un court-circuit serait le phénomène du courant qui emprunte un raccourci. Un raccourci, en électricité c’est là où la résistance électrique, c’est-à-dire, la difficulté du courant à passer, est la plus faible.

Or, lorsque la résistance est faible, la valeur du courant augmente considérablement, ce qui échauffe les conducteurs et peut provoquer un incendie. C’est aussi selon ce principe que fonctionnent les radiateurs électriques, mais dans ce cas l’échauffement est volontaire et maîtrisé.

Cette définition n’est toujours pas suffisante pour se rapprocher de celle des électrotechniciens. En effet, les électrotechniciens considèrent qu’un court-circuit est un phénomène qui survient lorsque la résistance du « raccourci » est quasiment nulle. Dans ce cas on obtient une valeur de courant très élevée, appelée courant de court-circuit. Pour arrêter les courts-circuits, existent des dispositifs de protection qui ne datent pas d’hier ; ce sont les fusibles et les disjoncteurs. Ils sont utilisés depuis les tout débuts de l’électricité, et les vieux fusibles des années 20 sont tout aussi capables d’arrêter les courts-circuits que nos disjoncteurs d’aujourd’hui et ainsi prévenir le risque d’incendie qui en résulterait.

Il est admis, dans le domaine de l’électrotechnique, qu’un court-circuit est un contact franc entre deux conducteurs possédant une différence de potentiel. Le terme « franc » est le terme récurrent définissant le court-circuit dans les milieux professionnels de l’électrotechnique et dans les universités. La norme NFC15-100 utilise aussi cette définition du court-circuit.

Extrait de la norme NFC 15-100 :

« 233.1

défaut

défaillance de l’isolation d’une partie active produisant une réduction du niveau d’isolement et pouvant provoquer une liaison accidentelle entre deux points de potentiels différent.
Un défaut peut être franc ou présenter une certaine impédance. Un défaut franc entre conducteurs actifs est un court-circuit. »

La détection des courts-circuits

Un disjoncteur ou un fusible est calibré pour rompre le circuit lors d’un dépassement d’une valeur de courant donnée. Dans le cas d’un court-circuit, cette valeur est largement dépassée. C’est dans le cas d’un défaut non franc, c’est-à-dire ne présentant pas une résistance faible (on considérera « résistance » comme synonyme « d’impédance ») que le risque d’incendie existe.

En effet, si la résistance du contact entre les conducteurs en défaut ne permet pas le dépassement de l’intensité de calibrage du fusible ou disjoncteur, ce dernier n’interrompra pas le courant et l’échauffement accidentel se poursuivra. Un fusible ou un disjoncteur ordinaire n’a aucun moyen de savoir sous quelle forme et à quel endroit est dissipée l’énergie générée par le courant qui le traverse.

En réalité, il serait surprenant que la plupart des défauts soient des “courts-circuits francs”. Toutes les installations en France sont supposées être protégées, au moins par le disjoncteur principal du fournisseur d’électricité. Dans le cas des habitations, même une installation mal dimensionnée a peu de chance de ne pas interrompre un court-circuit. Il n’existe probablement plus guère d’incendies résultant de véritables courts-circuits et ce y compris sur des installations très anciennes correctement maintenues. D’une manière générale les incendies d’origine électrique sont le fait d’échauffements n’impliquant pas de courts-circuits.

Les échauffements sans courts-circuits

Il existe deux grands types d’échauffements accidentels sans courts-circuits : l’échauffement avec défaut et l’échauffement sans défaut. Rappelons qu’un défaut est, selon la norme NFC 15-100, une défaillance de l’isolation d’une partie active produisant une réduction du niveau d’isolement et pouvant provoquer une liaison accidentelle entre deux points de potentiels différents.

  • L’échauffement avec défaut

L’échauffement avec défaut est souvent proche du court-circuit. C’est lorsque l’on a un défaut présentant une certaine résistance. Souvent, ce défaut peut devenir un court-circuit mais dans ce cas, l’échauffement aura eu lieu bien avant que le disjoncteur ou fusible n’interrompe le courant.

Deux conducteurs en contact présentant une différence de potentiel peuvent créer un arc électrique (au sens propre du terme) puis/ou « charbonner » et créer une certaine résistance. Dans ce cas le courant pourra continuer de passer au travers de ce point particulier sans forcément dépasser la valeur de courant calibrée du fusible ou du disjoncteur. Ainsi, un point chaud pourra perdurer sans que les disjoncteurs et fusibles ne puissent rien y faire.

 Même dans le cas où il ne se produit pas d’étincelle électrique visible, ce type de défaut est appelé « arc » par les constructeurs de disjoncteurs. Il n’est cependant pas nécessaire que le contact constitue une anomalie pour créer un arc. Un arc peut survenir aussi sans défaut. Pour résumer, un arc est un faux contact oscillant. Il est à noter qu’il existe maintenant sur le marché des disjoncteurs détecteurs d’arcs.

  • L’échauffement sans défaut 

L’échauffement sans défaut peut être le fait d’un arc ou d’autres conditions particulières telles qu’un mauvais raccord, par exemple un fil mal serré sur une borne d’un disjoncteur. S’il y a mauvais serrage ou usure d’un câble/fil, soit nous sommes dans le cas d’un arc, soit dans le cas d’une section de conducteur équivalente trop faible au vu du courant qui la traverse. Qui dit résistance dit échauffement. Il n’est pas rare de constater des échauffements au niveau des bornes de raccordement des disjoncteurs ou porte-fusibles dont le jaunissement du plastique témoigne.

Pour résumer, l’échauffement sans défaut peut se déclarer, avec ou sans arc, par :

  • un mauvais serrage des raccords : disjoncteurs, dominos, borniers divers, etc.
  • un conducteur dont la section est accidentellement réduite : câble écrasé, torsadé, rongé par les nuisibles, etc.
  • un conducteur ou une borne de disjoncteur/porte-fusible oxydée ou sale
  • une brasure (soudure = abus de langage) mal réalisée
  • une prise électrique sale, oxydée, usée.

Il est extrêmement fréquent de constater des échauffements au niveau des prises électriques, à la fois sur la prise murale et les cordons. Les prises sont des connexions rapides et temporaires dont le bon contact n’est garanti que lorsque les lames sont propres et ont conservé leur élasticité. Lorsque les lames de contact sont oxydées et détendues, elles génèrent inévitablement des faux contacts.

Prise de cordon sale et oxydée : à nettoyer ou remplacer.
Prise de tableau électrique ayant subi un échauffement : à remplacer.
Prise de cordon ayant subi un échauffement : à remplacer.
Prise murale neuve ayant subi un échauffement prononcé. Pourtant, la section des conducteurs correspondait à l’intensité nominale de la prise. Le disjoncteur qui protégeait cette prise (dit « de marque ») était neuf et certifié en France, son calibre correspondait à l’intensité nominale de la prise. Dans ce cas, il est probable que la cause de l’échauffement soit le mauvais contact des fils sur les bornes à ressorts, lesquelles ne font pas l’unanimité chez les professionnels. De plus, c’est certainement la protection différentielle qui a empêché la poursuite de l’échauffement, car les conducteurs ont fini par entrer en contact avec la terre (au milieu) suite à la fonte du plastique isolant. On peut donc remarquer que, contrairement à ce qui est généralement enseigné, l’interrupteur différentiel peut aussi protéger le matériel dans certaines situations.

Comment se prémunir contre ces risques d’échauffements liés aux défaillances matérielles ? 

1) Lors de l’utilisation normale des installations.

  • Faites  installer si possible des disjoncteurs détecteurs d’arcs.
  • Inspectez les câbles soumis à des mouvements fréquents : rallonges électriques, câbles de lampes articulées, d’appareils en mouvement comme les aspirateurs, etc. et faites remplacer tous les câbles écrasés torsadés ou qui présentent un aspect anormal (boursouflure, fils visibles, etc.)
  • D’une manière générale ne laissez jamais tourner une machine à laver, un sèche linge ou tout autre appareil puissant branché sur une prise murale sans surveillance.
  • Lors du branchement des appareils, veillez à ce que les prises de courant soient toujours enfichées à fond.
  • Lorsque vous devez brancher des appareils puissants comme des radiateurs électriques, sèches-linge, machines à laver, vérifiez ou faites vérifier régulièrement la prise murale, vérifiez aussi régulièrement la prise du cordon, si elle présente des traces de jaunissement ou si le plastique commence à fondre, remplacez le cordon et la prise murale.
  • Ne débranchez jamais la prise d’un appareil en fonctionnement, commutez toujours l’appareil en position « arrêt » depuis la commande prévue à cet effet. Par exemple, mettez toujours le thermostat du four et/ou l’interrupteur sur « arrêt » avant de retirer la prise. Cela évitera de détériorer la prise murale et celle du cordon de l’appareil, qui , à terme, génèreraient des faux contacts.
Usure consécutive à la déconnexion répétée de la prise (multiprise), sans coupure préalable des appareils (déconnexion dite en charge). Dans une telle situation, il faut vérifier l’état de la prise murale associée.
  • Ne laissez jamais un appareil branché après utilisation et particulièrement ceux dont le câble d’alimentation est amené à bouger souvent : outillage électroportatif, aspirateur, etc. En effet d’un point de vue purement statistique, moins il y a de conducteurs sous tension et plus la probabilité de défaillance est faible.
  • Vérifiez régulièrement l’absence de jaunissement sur les disjoncteurs et les prises, remplacez ou faites remplacer systématiquement les appareillages endommagés.

2) Lors d’interventions sur les installations.

  • Vérifiez le serrage des raccords de toutes les nouvelles installations à la fin de chaque intervention : c’est à dire, le serrage des vis des bornes. Dans le cas des bornes à ressorts, vérifiez la bonne tenue mécanique du fil dans la borne. En revanche, nous n’avons pas la possibilité de contrôler la force de serrage du fil, supposée être calibrée par la valeur du ressort de la borne. Ces dispositifs ne font pas l’unanimité chez les professionnels (voir l’exemple de la prise fondue ci-dessus).
  • Vérifiez qu’aucun câble ou fil ne soit en friction ou serré sur des arêtes vives.
  • Désoxydez et dégraissez consciencieusement (re-dénuder si besoin) les extrémités des conducteurs lors de la construction ou du remplacement d’une installation ou d’un élément d’installation.
  • Lors de la réalisation d’une brasure, dégraissez et désoxydez les éléments en contact, utilisez de la pâte décapante.

Les échauffements liés aux erreurs humaines.

Enfin, il existe les échauffements sans défaut résultant de causes humaines évitables, qui sont le fait de comportements conscients et visibles, il s’agit principalement de l’erreur de dimensionnement des conducteurs (erreur de conception d’une installation) et de la surcharge.

  • L’erreur de dimensionnement 

L’erreur de dimensionnement des conducteurs est inévitablement une cause de surchauffe. Nous sommes dans le cas d’un courant nominal trop important par rapport à la section du conducteur.

  • La surcharge

La surcharge c’est lorsque l’on branche trop d’appareils sur une même prise. C’est particulièrement dangereux lorsque l’on utilise une prise/multiprise qui est branchée sur une ligne dont la valeur de calibrage du disjoncteur est supérieure à la valeur du courant maximal admissible par la prise/ multiprise. Ce n’est pas censé arriver dans une installation correctement protégée, par des disjoncteurs magnéto-thermiques (qui détectent les surcharges) ou certains types de fusibles. En effet avec des multiprises censées supporter le courant nominal imposé par le formalisme de la prise, une surcharge ne devrait jamais être possible. Une surcharge peut aussi être la conséquence d’un moteur électrique bloqué ou usé, qui va consommer une intensité supérieure à sa consommation nominale. Sachez toutefois qu’un disjoncteur magnétique ne peut pas détecter une surcharge. Plus guère répandus sur les tableaux électriques, il en reste encore. Un fusible peut stopper une surcharge (s’il est bien dimensionné) car c’est un filament qui s’échauffe et accumule de la chaleur avant de fondre.

Éviter les erreurs.

En conséquence, il est fortement déconseillé d’utiliser des adaptateurs permettant de passer d’une prise normalisée 20 Ampères à une 16 Ampères par exemple. Rappelez vous qu’un disjoncteur n’a aucun moyen de savoir dans quels conducteurs/adaptateurs passe le courant qu’il surveille. Si vous n’avez pas le choix, remplacez impérativement le fusible ou le disjoncteur afin qu’il corresponde à l’intensité maximale admissible par le format de prise adapté. Si le fusible ou le disjoncteur n’est pas remplacé, vous risquez d’autoriser le passage d’un courant de 20 Ampères, en cas de problème, dans une prise ou multiprise ne pouvant en supporter que 16 au maximum.

D’une manière générale, ne branchez jamais d’appareils “puissants” tels que les radiateurs, sèche-linge, machines à laver, machines outils, etc. sur des multiprises.

Conclusion.

Ayez toujours la curiosité de comprendre les véritables phénomènes physiques impliqués dans tous les sujets, suivez les recommandations des physiciens, réellement compétents contrairement aux utilisateurs intermédiaires et journalistes divers.